Security News
Research
Supply Chain Attack on Rspack npm Packages Injects Cryptojacking Malware
A supply chain attack on Rspack's npm packages injected cryptomining malware, potentially impacting thousands of developers.
The lib0 npm package is a collection of utility functions and modules that provide a wide range of functionalities, including data structures, asynchronous programming, and other common utilities. It is designed to be lightweight and efficient, making it suitable for various types of JavaScript and TypeScript projects.
Data Structures
lib0 provides various data structures like BTree, which can be used to store and manage data efficiently. In this example, a BTree is created, a key-value pair is set, and then retrieved.
const { BTree } = require('lib0');
const tree = new BTree();
tree.set('key', 'value');
console.log(tree.get('key')); // Output: 'value'
Asynchronous Utilities
lib0 includes utilities for handling asynchronous operations. The `promise.resolveWith` function is used to handle promises and log the result of an asynchronous function.
const { promise } = require('lib0');
const asyncFunction = async () => 'Hello, World!';
promise.resolveWith(asyncFunction()).then(console.log); // Output: 'Hello, World!'
Random Utilities
lib0 offers various random utilities, such as generating random numbers. The `random.uint32` function generates a random 32-bit unsigned integer.
const { random } = require('lib0');
console.log(random.uint32()); // Output: A random 32-bit unsigned integer
Lodash is a popular utility library that provides a wide range of functions for common programming tasks, such as manipulating arrays and objects, and working with functions and strings. Compared to lib0, Lodash has a larger community and more comprehensive documentation, but it is also larger in size.
Underscore is another utility library similar to Lodash, offering a variety of functions for functional programming. It is known for its simplicity and ease of use. While it provides many of the same utilities as lib0, it is not as lightweight and may not include some of the more specialized data structures found in lib0.
Ramda is a functional programming library for JavaScript that emphasizes immutability and pure functions. It provides a different approach compared to lib0, focusing more on functional programming paradigms. Ramda is a good choice for projects that require a functional programming style.
Monorepo of isomorphic utility functions
This library is meant to replace all global JavaScript functions with isomorphic module imports. Additionally, it implements several performance-oriented utility modules. Most noteworthy are the binary encoding/decoding modules [lib0/encoding] / [lib0/decoding], the randomized testing framework [lib0/testing], the fast Pseudo Random Number Generator [lib0/PRNG], the small socket.io alternative [lib0/websocket], and the logging module [lib0/logging] that allows colorized logging in all environments. Lib0 has only one dependency, which is also from the author of lib0. If lib0 is transpiled with rollup or webpack, very little code is produced because of the way that it is written. All exports are pure and are removed by transpilers that support dead code elimination. Here is an example of how dead code elemination and mangling optimizes code from lib0:
// How the code is optimized by transpilers:
// lib0/json.js
export const stringify = JSON.stringify
export const parse = JSON.parse
// index.js
import * as json from 'lib0/json'
export const f = (arg1, arg2) => json.stringify(arg1) + json.stringify(arg2)
// compiled with rollup and uglifyjs:
const s=JSON.stringify,f=(a,b)=>s(a)+s(b)
export {f}
Each function in this library is tested thoroughly and is not deoptimized by v8 (except some logging and comparison functions that can't be implemented without deoptimizations). This library implements its own test suite that is designed for randomized testing and inspecting performance issues.
node --trace-deopt
and node --trace-opt
The code style might be a bit different from what you are used to. Stay open. Most of the design choices have been thought through. The purpose of this code style is to create code that is optimized by the compiler and that results in small code bundles when used with common module bundlers. Keep that in mind when reading the library.
const x = someCondition ? A : B
cannot be eleminated, because it is tied to a condition.class Coord { constructor (x, y) { this.x = x; this.y = y} }
instead of { x: x, y: y }
, because the compiler needs to be assured that the order of properties does not change. { y: y, x: x }
has a different hidden class than { x: x, y: y }
, which will lead to code deoptimizations if their use is alternated.new
keyword. Prefer exporting factory functions like const createCoordinate = (x, y) => new Coord(x, y)
.class Duck { eat () { swallow() } }
and class Cow { eat () { chew() } }
have the
same signature, but implement it differently.const
variable declarations. Use let
only in loops. const
always leads to easier code.lib0
contains isomorphic modules that work in nodejs, the browser, and other environments. It exports modules as the commonjs
and the new esm module
format.
If possible,
ESM module
import module from 'lib0/[module]' // automatically resolves to lib0/[module].js
CommonJS
require('lib0/[module]') // automatically resolves to lib0/dist/[module].cjs
Manual
Automatically resolving to commonjs
and esm modules
is implemented using conditional exports which is available in node>=v12
. If support for older versions is required, then it is recommended to define the location of the module manually:
import module from 'lib0/[module].js'
// require('lib0/dist/[module].cjs')
import * as array from 'lib0/array'
array.last(arr: ArrayLike<L>): L
Return the last element of an array. The element must exist
array.create(): Array<C>
array.copy(a: Array<D>): Array<D>
array.appendTo(dest: Array<M>, src: Array<M>)
Append elements from src to dest
array.from(arraylike: ArrayLike<T>|Iterable<T>): T
Transforms something array-like to an actual Array.
array.every(arr: ARR, f: function(ITEM, number, ARR):boolean): boolean
True iff condition holds on every element in the Array.
array.some(arr: ARR, f: function(S, number, ARR):boolean): boolean
True iff condition holds on some element in the Array.
array.equalFlat(a: ArrayLike<ELEM>, b: ArrayLike<ELEM>): boolean
array.flatten(arr: Array<Array<ELEM>>): Array<ELEM>
array.isArray
array.unique(arr: Array<T>): Array<T>
array.uniqueBy(arr: ArrayLike<T>, mapper: function(T):M): Array<T>
import * as binary from 'lib0/binary'
binary.BIT1: number
n-th bit activated.
binary.BIT2
binary.BIT3
binary.BIT4
binary.BIT5
binary.BIT6
binary.BIT7
binary.BIT8
binary.BIT9
binary.BIT10
binary.BIT11
binary.BIT12
binary.BIT13
binary.BIT14
binary.BIT15
binary.BIT16
binary.BIT17
binary.BIT18
binary.BIT19
binary.BIT20
binary.BIT21
binary.BIT22
binary.BIT23
binary.BIT24
binary.BIT25
binary.BIT26
binary.BIT27
binary.BIT28
binary.BIT29
binary.BIT30
binary.BIT31
binary.BIT32
binary.BITS0: number
First n bits activated.
binary.BITS1
binary.BITS2
binary.BITS3
binary.BITS4
binary.BITS5
binary.BITS6
binary.BITS7
binary.BITS8
binary.BITS9
binary.BITS10
binary.BITS11
binary.BITS12
binary.BITS13
binary.BITS14
binary.BITS15
binary.BITS16
binary.BITS17
binary.BITS18
binary.BITS19
binary.BITS20
binary.BITS21
binary.BITS22
binary.BITS23
binary.BITS24
binary.BITS25
binary.BITS26
binary.BITS27
binary.BITS28
binary.BITS29
binary.BITS30
binary.BITS31: number
binary.BITS32: number
import * as broadcastchannel from 'lib0/broadcastchannel'
// In browser window A:
broadcastchannel.subscribe('my events', data => console.log(data))
broadcastchannel.publish('my events', 'Hello world!') // => A: 'Hello world!' fires synchronously in same tab
// In browser window B:
broadcastchannel.publish('my events', 'hello from tab B') // => A: 'hello from tab B'
broadcastchannel.subscribe(room: string, f: function(any, any):any)
Subscribe to global publish
events.
broadcastchannel.unsubscribe(room: string, f: function(any, any):any)
Unsubscribe from publish
global events.
broadcastchannel.publish(room: string, data: any, origin: any)
Publish data to all subscribers (including subscribers on this tab)
import * as buffer from 'lib0/buffer'
buffer.createUint8ArrayFromLen(len: number)
buffer.createUint8ArrayViewFromArrayBuffer(buffer: ArrayBuffer, byteOffset: number, length: number)
Create Uint8Array with initial content from buffer
buffer.createUint8ArrayFromArrayBuffer(buffer: ArrayBuffer)
Create Uint8Array with initial content from buffer
buffer.toBase64
buffer.fromBase64
buffer.copyUint8Array(uint8Array: Uint8Array): Uint8Array
Copy the content of an Uint8Array view to a new ArrayBuffer.
buffer.encodeAny(data: any): Uint8Array
Encode anything as a UInt8Array. It's a pun on typescripts's any
type.
See encoding.writeAny for more information.
buffer.decodeAny(buf: Uint8Array): any
Decode an any-encoded value.
import * as cache from 'lib0/cache'
new cache.Cache(timeout: number)
cache.removeStale(cache: module:cache.Cache<K, V>): number
cache.set(cache: module:cache.Cache<K, V>, key: K, value: V)
cache.get(cache: module:cache.Cache<K, V>, key: K): V | undefined
cache.refreshTimeout(cache: module:cache.Cache<K, V>, key: K)
cache.getAsync(cache: module:cache.Cache<K, V>, key: K): V | Promise<V> | undefined
Works well in conjunktion with setIfUndefined which has an async init function. Using getAsync & setIfUndefined ensures that the init function is only called once.
cache.remove(cache: module:cache.Cache<K, V>, key: K)
cache.setIfUndefined(cache: module:cache.Cache<K, V>, key: K, init: function():Promise<V>, removeNull: boolean): Promise<V> | V
cache.create(timeout: number)
import * as component from 'lib0/component'
component.registry: CustomElementRegistry
component.define(name: string, constr: any, opts: ElementDefinitionOptions)
component.whenDefined(name: string): Promise<CustomElementConstructor>
new component.Lib0Component(state: S)
component.Lib0Component#state: S|null
component.Lib0Component#setState(state: S, forceStateUpdate: boolean)
component.Lib0Component#updateState(stateUpdate: any)
component.createComponent(name: string, cnf: module:component~CONF<T>): Class<module:component.Lib0Component>
component.createComponentDefiner(definer: function)
component.defineListComponent
component.defineLazyLoadingComponent
import * as conditions from 'lib0/conditions'
conditions.undefinedToNull
import * as crypto from 'lib0/crypto'
y(data: string | Uint8Array): Uint8Array
ymmetricKey(secret: string | Uint8Array, salt: string | Uint8Array, opts: Object, opts.extractable: boolean, opts.usages: Array<'sign'|'verify'|'encrypt'|'decrypt'>): PromiseLike<CryptoKey>
ymmetricKey()
eAsymmetricKey(opts: Object, opts.extractable: boolean, opts.usages: Array<'sign'|'verify'|'encrypt'|'decrypt'>)
eAsymmetricKey()
ey(key: CryptoKey)
ey()
ymmetricKey(jwk: any, opts: Object, opts.extractable: boolean, opts.usages: Array<'sign'|'verify'|'encrypt'|'decrypt'>)
ymmetricKey()
symmetricKey(jwk: any, opts: Object, opts.extractable: boolean, opts.usages: Array<'sign'|'verify'|'encrypt'|'decrypt'>)
symmetricKey()
(data: Uint8Array, key: CryptoKey): PromiseLike<Uint8Array>
()
(data: Uint8Array, key: CryptoKey): PromiseLike<Uint8Array>
()
(data: Uint8Array, privateKey: CryptoKey): PromiseLike<Uint8Array>
()
(signature: Uint8Array, data: Uint8Array, publicKey: CryptoKey): PromiseLike<boolean>
()
import * as decoding from 'lib0/decoding'
Use [lib0/decoding] with [lib0/encoding]. Every encoding function has a corresponding decoding function.
Encodes numbers in little-endian order (least to most significant byte order) and is compatible with Golang's binary encoding (https://golang.org/pkg/encoding/binary/) which is also used in Protocol Buffers.
// encoding step
const encoder = encoding.createEncoder()
encoding.writeVarUint(encoder, 256)
encoding.writeVarString(encoder, 'Hello world!')
const buf = encoding.toUint8Array(encoder)
// decoding step
const decoder = decoding.createDecoder(buf)
decoding.readVarUint(decoder) // => 256
decoding.readVarString(decoder) // => 'Hello world!'
decoding.hasContent(decoder) // => false - all data is read
new decoding.Decoder(uint8Array: Uint8Array)
A Decoder handles the decoding of an Uint8Array.
decoding.Decoder#arr: Uint8Array
Decoding target.
decoding.Decoder#pos: number
Current decoding position.
decoding.createDecoder(uint8Array: Uint8Array): module:decoding.Decoder
decoding.hasContent(decoder: module:decoding.Decoder): boolean
decoding.clone(decoder: module:decoding.Decoder, newPos: number): module:decoding.Decoder
Clone a decoder instance. Optionally set a new position parameter.
decoding.readUint8Array(decoder: module:decoding.Decoder, len: number): Uint8Array
Create an Uint8Array view of the next len
bytes and advance the position by len
.
Important: The Uint8Array still points to the underlying ArrayBuffer. Make sure to discard the result as soon as possible to prevent any memory leaks.
Use buffer.copyUint8Array
to copy the result into a new Uint8Array.
decoding.readVarUint8Array(decoder: module:decoding.Decoder): Uint8Array
Read variable length Uint8Array.
Important: The Uint8Array still points to the underlying ArrayBuffer. Make sure to discard the result as soon as possible to prevent any memory leaks.
Use buffer.copyUint8Array
to copy the result into a new Uint8Array.
decoding.readTailAsUint8Array(decoder: module:decoding.Decoder): Uint8Array
Read the rest of the content as an ArrayBuffer
decoding.skip8(decoder: module:decoding.Decoder): number
Skip one byte, jump to the next position.
decoding.readUint8(decoder: module:decoding.Decoder): number
Read one byte as unsigned integer.
decoding.readUint16(decoder: module:decoding.Decoder): number
Read 2 bytes as unsigned integer.
decoding.readUint32(decoder: module:decoding.Decoder): number
Read 4 bytes as unsigned integer.
decoding.readUint32BigEndian(decoder: module:decoding.Decoder): number
Read 4 bytes as unsigned integer in big endian order. (most significant byte first)
decoding.peekUint8(decoder: module:decoding.Decoder): number
Look ahead without incrementing the position to the next byte and read it as unsigned integer.
decoding.peekUint16(decoder: module:decoding.Decoder): number
Look ahead without incrementing the position to the next byte and read it as unsigned integer.
decoding.peekUint32(decoder: module:decoding.Decoder): number
Look ahead without incrementing the position to the next byte and read it as unsigned integer.
decoding.readVarUint(decoder: module:decoding.Decoder): number
Read unsigned integer (32bit) with variable length. 1/8th of the storage is used as encoding overhead.
decoding.readVarInt(decoder: module:decoding.Decoder): number
Read signed integer (32bit) with variable length. 1/8th of the storage is used as encoding overhead.
decoding.peekVarUint(decoder: module:decoding.Decoder): number
Look ahead and read varUint without incrementing position
decoding.peekVarInt(decoder: module:decoding.Decoder): number
Look ahead and read varUint without incrementing position
decoding.readVarString
decoding.peekVarString(decoder: module:decoding.Decoder): string
Look ahead and read varString without incrementing position
decoding.readFromDataView(decoder: module:decoding.Decoder, len: number): DataView
decoding.readFloat32(decoder: module:decoding.Decoder)
decoding.readFloat64(decoder: module:decoding.Decoder)
decoding.readBigInt64(decoder: module:decoding.Decoder)
decoding.readBigUint64(decoder: module:decoding.Decoder)
decoding.readAny(decoder: module:decoding.Decoder)
new decoding.RleDecoder(uint8Array: Uint8Array, reader: function(module:decoding.Decoder):T)
T must not be null.
decoding.RleDecoder#s: T|null
Current state
decoding.RleDecoder#read()
decoding.RleDecoder#s: T
new decoding.IntDiffDecoder(uint8Array: Uint8Array, start: number)
decoding.IntDiffDecoder#s: number
Current state
decoding.IntDiffDecoder#read(): number
new decoding.RleIntDiffDecoder(uint8Array: Uint8Array, start: number)
decoding.RleIntDiffDecoder#s: number
Current state
decoding.RleIntDiffDecoder#read(): number
decoding.RleIntDiffDecoder#s: number
new decoding.UintOptRleDecoder(uint8Array: Uint8Array)
decoding.UintOptRleDecoder#s: number
decoding.UintOptRleDecoder#read()
decoding.UintOptRleDecoder#s: number
new decoding.IncUintOptRleDecoder(uint8Array: Uint8Array)
decoding.IncUintOptRleDecoder#s: number
decoding.IncUintOptRleDecoder#read()
new decoding.IntDiffOptRleDecoder(uint8Array: Uint8Array)
decoding.IntDiffOptRleDecoder#s: number
decoding.IntDiffOptRleDecoder#read(): number
new decoding.StringDecoder(uint8Array: Uint8Array)
decoding.StringDecoder#spos: number
decoding.StringDecoder#read(): string
decoding.RleDecoder#arr: Uint8Array
Decoding target.
decoding.RleDecoder#pos: number
Current decoding position.
decoding.IntDiffDecoder#arr: Uint8Array
Decoding target.
decoding.IntDiffDecoder#pos: number
Current decoding position.
decoding.RleIntDiffDecoder#arr: Uint8Array
Decoding target.
decoding.RleIntDiffDecoder#pos: number
Current decoding position.
decoding.UintOptRleDecoder#arr: Uint8Array
Decoding target.
decoding.UintOptRleDecoder#pos: number
Current decoding position.
decoding.IncUintOptRleDecoder#arr: Uint8Array
Decoding target.
decoding.IncUintOptRleDecoder#pos: number
Current decoding position.
decoding.IntDiffOptRleDecoder#arr: Uint8Array
Decoding target.
decoding.IntDiffOptRleDecoder#pos: number
Current decoding position.
import * as diff from 'lib0/diff'
diff.simpleDiffString(a: string, b: string): module:diff~SimpleDiff<string>
Create a diff between two strings. This diff implementation is highly efficient, but not very sophisticated.
diff.simpleDiff
diff.simpleDiffArray(a: Array<T>, b: Array<T>, compare: function(T, T):boolean): module:diff~SimpleDiff<Array<T>>
Create a diff between two arrays. This diff implementation is highly efficient, but not very sophisticated.
Note: This is basically the same function as above. Another function was created so that the runtime can better optimize these function calls.
diff.simpleDiffStringWithCursor(a: string, b: string, cursor: number)
Diff text and try to diff at the current cursor position.
import * as dom from 'lib0/dom'
dom.doc: Document
dom.createElement
dom.createDocumentFragment
dom.createTextNode
dom.domParser
dom.emitCustomEvent
dom.setAttributes
dom.setAttributesMap
dom.fragment
dom.append
dom.remove
dom.addEventListener
dom.removeEventListener
dom.addEventListeners
dom.removeEventListeners
dom.element
dom.canvas
dom.text
dom.pairToStyleString
dom.pairsToStyleString
dom.mapToStyleString
dom.querySelector
dom.querySelectorAll
dom.getElementById
dom.parseFragment
dom.childNodes: any
dom.parseElement
dom.replaceWith
dom.insertBefore
dom.appendChild
dom.ELEMENT_NODE
dom.TEXT_NODE
dom.CDATA_SECTION_NODE
dom.COMMENT_NODE
dom.DOCUMENT_NODE
dom.DOCUMENT_TYPE_NODE
dom.DOCUMENT_FRAGMENT_NODE
dom.checkNodeType(node: any, type: number)
dom.isParentOf(parent: Node, child: HTMLElement)
import * as encoding from 'lib0/encoding'
Use [lib0/encoding] with [lib0/decoding]. Every encoding function has a corresponding decoding function.
Encodes numbers in little-endian order (least to most significant byte order) and is compatible with Golang's binary encoding (https://golang.org/pkg/encoding/binary/) which is also used in Protocol Buffers.
// encoding step
const encoder = encoding.createEncoder()
encoding.writeVarUint(encoder, 256)
encoding.writeVarString(encoder, 'Hello world!')
const buf = encoding.toUint8Array(encoder)
// decoding step
const decoder = decoding.createDecoder(buf)
decoding.readVarUint(decoder) // => 256
decoding.readVarString(decoder) // => 'Hello world!'
decoding.hasContent(decoder) // => false - all data is read
new encoding.Encoder()
A BinaryEncoder handles the encoding to an Uint8Array.
encoding.Encoder#bufs: Array<Uint8Array>
encoding.createEncoder(): module:encoding.Encoder
encoding.length(encoder: module:encoding.Encoder): number
The current length of the encoded data.
encoding.toUint8Array(encoder: module:encoding.Encoder): Uint8Array
Transform to Uint8Array.
encoding.verifyLen(encoder: module:encoding.Encoder, len: number)
Verify that it is possible to write len
bytes wtihout checking. If
necessary, a new Buffer with the required length is attached.
encoding.write(encoder: module:encoding.Encoder, num: number)
Write one byte to the encoder.
encoding.set(encoder: module:encoding.Encoder, pos: number, num: number)
Write one byte at a specific position. Position must already be written (i.e. encoder.length > pos)
encoding.writeUint8(encoder: module:encoding.Encoder, num: number)
Write one byte as an unsigned integer.
encoding.setUint8(encoder: module:encoding.Encoder, pos: number, num: number)
Write one byte as an unsigned Integer at a specific location.
encoding.writeUint16(encoder: module:encoding.Encoder, num: number)
Write two bytes as an unsigned integer.
encoding.setUint16(encoder: module:encoding.Encoder, pos: number, num: number)
Write two bytes as an unsigned integer at a specific location.
encoding.writeUint32(encoder: module:encoding.Encoder, num: number)
Write two bytes as an unsigned integer
encoding.writeUint32BigEndian(encoder: module:encoding.Encoder, num: number)
Write two bytes as an unsigned integer in big endian order. (most significant byte first)
encoding.setUint32(encoder: module:encoding.Encoder, pos: number, num: number)
Write two bytes as an unsigned integer at a specific location.
encoding.writeVarUint(encoder: module:encoding.Encoder, num: number)
Write a variable length unsigned integer. Max encodable integer is 2^53.
encoding.writeVarInt(encoder: module:encoding.Encoder, num: number)
Write a variable length integer.
We use the 7th bit instead for signaling that this is a negative number.
encoding.writeVarString
encoding.writeBinaryEncoder(encoder: module:encoding.Encoder, append: module:encoding.Encoder)
Write the content of another Encoder.
encoding.writeUint8Array(encoder: module:encoding.Encoder, uint8Array: Uint8Array)
Append fixed-length Uint8Array to the encoder.
encoding.writeVarUint8Array(encoder: module:encoding.Encoder, uint8Array: Uint8Array)
Append an Uint8Array to Encoder.
encoding.writeOnDataView(encoder: module:encoding.Encoder, len: number): DataView
Create an DataView of the next len
bytes. Use it to write data after
calling this function.
// write float32 using DataView
const dv = writeOnDataView(encoder, 4)
dv.setFloat32(0, 1.1)
// read float32 using DataView
const dv = readFromDataView(encoder, 4)
dv.getFloat32(0) // => 1.100000023841858 (leaving it to the reader to find out why this is the correct result)
encoding.writeFloat32(encoder: module:encoding.Encoder, num: number)
encoding.writeFloat64(encoder: module:encoding.Encoder, num: number)
encoding.writeBigInt64(encoder: module:encoding.Encoder, num: bigint)
encoding.writeBigUint64(encoder: module:encoding.Encoder, num: bigint)
encoding.writeAny(encoder: module:encoding.Encoder, data: undefined|null|number|bigint|boolean|string|Object<string,any>|Array<any>|Uint8Array)
Encode data with efficient binary format.
Differences to JSON: • Transforms data to a binary format (not to a string) • Encodes undefined, NaN, and ArrayBuffer (these can't be represented in JSON) • Numbers are efficiently encoded either as a variable length integer, as a 32 bit float, as a 64 bit float, or as a 64 bit bigint.
Encoding table:
Data Type | Prefix | Encoding Method | Comment |
---|---|---|---|
undefined | 127 | Functions, symbol, and everything that cannot be identified is encoded as undefined | |
null | 126 | ||
integer | 125 | writeVarInt | Only encodes 32 bit signed integers |
float32 | 124 | writeFloat32 | |
float64 | 123 | writeFloat64 | |
bigint | 122 | writeBigInt64 | |
boolean (false) | 121 | True and false are different data types so we save the following byte | |
boolean (true) | 120 | - 0b01111000 so the last bit determines whether true or false | |
string | 119 | writeVarString | |
object<string,any> | 118 | custom | Writes {length} then {length} key-value pairs |
array | 117 | custom | Writes {length} then {length} json values |
Uint8Array | 116 | writeVarUint8Array | We use Uint8Array for any kind of binary data |
Reasons for the decreasing prefix: We need the first bit for extendability (later we may want to encode the prefix with writeVarUint). The remaining 7 bits are divided as follows: [0-30] the beginning of the data range is used for custom purposes (defined by the function that uses this library) [31-127] the end of the data range is used for data encoding by lib0/encoding.js
new encoding.RleEncoder(writer: function(module:encoding.Encoder, T):void)
Now come a few stateful encoder that have their own classes.
encoding.RleEncoder#s: T|null
Current state
encoding.RleEncoder#write(v: T)
new encoding.IntDiffEncoder(start: number)
Basic diff decoder using variable length encoding.
Encodes the values [3, 1100, 1101, 1050, 0] to [3, 1097, 1, -51, -1050] using writeVarInt.
encoding.IntDiffEncoder#s: number
Current state
encoding.IntDiffEncoder#write(v: number)
new encoding.RleIntDiffEncoder(start: number)
A combination of IntDiffEncoder and RleEncoder.
Basically first writes the IntDiffEncoder and then counts duplicate diffs using RleEncoding.
Encodes the values [1,1,1,2,3,4,5,6] as [1,1,0,2,1,5] (RLE([1,0,0,1,1,1,1,1]) ⇒ RleIntDiff[1,1,0,2,1,5])
encoding.RleIntDiffEncoder#s: number
Current state
encoding.RleIntDiffEncoder#write(v: number)
new encoding.UintOptRleEncoder()
Optimized Rle encoder that does not suffer from the mentioned problem of the basic Rle encoder.
Internally uses VarInt encoder to write unsigned integers. If the input occurs multiple times, we write write it as a negative number. The UintOptRleDecoder then understands that it needs to read a count.
Encodes [1,2,3,3,3] as [1,2,-3,3] (once 1, once 2, three times 3)
encoding.UintOptRleEncoder#s: number
encoding.UintOptRleEncoder#write(v: number)
encoding.UintOptRleEncoder#toUint8Array()
new encoding.IncUintOptRleEncoder()
Increasing Uint Optimized RLE Encoder
The RLE encoder counts the number of same occurences of the same value. The IncUintOptRle encoder counts if the value increases. I.e. 7, 8, 9, 10 will be encoded as [-7, 4]. 1, 3, 5 will be encoded as [1, 3, 5].
encoding.IncUintOptRleEncoder#s: number
encoding.IncUintOptRleEncoder#write(v: number)
encoding.IncUintOptRleEncoder#toUint8Array()
new encoding.IntDiffOptRleEncoder()
A combination of the IntDiffEncoder and the UintOptRleEncoder.
The count approach is similar to the UintDiffOptRleEncoder, but instead of using the negative bitflag, it encodes in the LSB whether a count is to be read. Therefore this Encoder only supports 31 bit integers!
Encodes [1, 2, 3, 2] as [3, 1, 6, -1] (more specifically [(1 << 1) | 1, (3 << 0) | 0, -1])
Internally uses variable length encoding. Contrary to normal UintVar encoding, the first byte contains:
Therefore, only five bits remain to encode diff ranges.
Use this Encoder only when appropriate. In most cases, this is probably a bad idea.
encoding.IntDiffOptRleEncoder#s: number
encoding.IntDiffOptRleEncoder#write(v: number)
encoding.IntDiffOptRleEncoder#toUint8Array()
new encoding.StringEncoder()
Optimized String Encoder.
Encoding many small strings in a simple Encoder is not very efficient. The function call to decode a string takes some time and creates references that must be eventually deleted. In practice, when decoding several million small strings, the GC will kick in more and more often to collect orphaned string objects (or maybe there is another reason?).
This string encoder solves the above problem. All strings are concatenated and written as a single string using a single encoding call.
The lengths are encoded using a UintOptRleEncoder.
encoding.StringEncoder#sarr: Array<string>
encoding.StringEncoder#write(string: string)
encoding.StringEncoder#toUint8Array()
encoding.RleEncoder#bufs: Array<Uint8Array>
encoding.IntDiffEncoder#bufs: Array<Uint8Array>
encoding.RleIntDiffEncoder#bufs: Array<Uint8Array>
import * as env from 'lib0/environment'
env.isNode
env.isBrowser
env.isMac
env.hasParam
env.getParam
env.getVariable
env.getConf(name: string): string|null
env.hasConf
env.production
env.supportsColor
import * as error from 'lib0/error'
error.create(s: string): Error
error.methodUnimplemented(): never
error.unexpectedCase(): never
import * as eventloop from 'lib0/eventloop'
eventloop.enqueue(f: function():void)
eventloop#destroy()
eventloop.timeout(timeout: number, callback: function): module:eventloop~TimeoutObject
eventloop.interval(timeout: number, callback: function): module:eventloop~TimeoutObject
eventloop.Animation
eventloop.animationFrame(cb: function(number):void): module:eventloop~TimeoutObject
eventloop.idleCallback(cb: function): module:eventloop~TimeoutObject
Note: this is experimental and is probably only useful in browsers.
eventloop.createDebouncer(timeout: number): function(function():void):void
import * as function from 'lib0/function'
function.callAll(fs: Array<function>, args: Array<any>)
Calls all functions in fs
with args. Only throws after all functions were called.
function.nop
function.apply(f: function():T): T
function.id(a: A): A
function.equalityStrict(a: T, b: T): boolean
function.equalityFlat(a: Array<T>|object, b: Array<T>|object): boolean
function.equalityDeep(a: any, b: any): boolean
function.isOneOf(value: V, options: Array<OPTS>)
import * as lib0 from 'lib0/index'
Not recommended if the module bundler doesn't support dead code elimination.
import * as indexeddb from 'lib0/indexeddb'
indexeddb.rtop(request: IDBRequest): Promise<any>
IDB Request to Promise transformer
indexeddb.openDB(name: string, initDB: function(IDBDatabase):any): Promise<IDBDatabase>
indexeddb.deleteDB(name: string)
indexeddb.createStores(db: IDBDatabase, definitions: Array<Array<string>|Array<string|IDBObjectStoreParameters|undefined>>)
indexeddb.transact(db: IDBDatabase, stores: Array<string>, access: "readwrite"|"readonly"): Array<IDBObjectStore>
indexeddb.count(store: IDBObjectStore, range: IDBKeyRange): Promise<number>
indexeddb.get(store: IDBObjectStore, key: String | number | ArrayBuffer | Date | Array<any> ): Promise<String | number | ArrayBuffer | Date | Array<any>>
indexeddb.del(store: IDBObjectStore, key: String | number | ArrayBuffer | Date | IDBKeyRange | Array<any> )
indexeddb.put(store: IDBObjectStore, item: String | number | ArrayBuffer | Date | boolean, key: String | number | ArrayBuffer | Date | Array<any>)
indexeddb.add(store: IDBObjectStore, item: String|number|ArrayBuffer|Date|boolean, key: String|number|ArrayBuffer|Date|Array.<any>): Promise<any>
indexeddb.addAutoKey(store: IDBObjectStore, item: String|number|ArrayBuffer|Date): Promise<number>
indexeddb.getAll(store: IDBObjectStore, range: IDBKeyRange, limit: number): Promise<Array<any>>
indexeddb.getAllKeys(store: IDBObjectStore, range: IDBKeyRange, limit: number): Promise<Array<any>>
indexeddb.queryFirst(store: IDBObjectStore, query: IDBKeyRange|null, direction: 'next'|'prev'|'nextunique'|'prevunique'): Promise<any>
indexeddb.getLastKey(store: IDBObjectStore, range: IDBKeyRange?): Promise<any>
indexeddb.getFirstKey(store: IDBObjectStore, range: IDBKeyRange?): Promise<any>
indexeddb.getAllKeysValues(store: IDBObjectStore, range: IDBKeyRange, limit: number): Promise<Array<KeyValuePair>>
indexeddb.iterate(store: IDBObjectStore, keyrange: IDBKeyRange|null, f: function(any,any):void|boolean|Promise<void|boolean>, direction: 'next'|'prev'|'nextunique'|'prevunique')
Iterate on keys and values
indexeddb.iterateKeys(store: IDBObjectStore, keyrange: IDBKeyRange|null, f: function(any):void|boolean|Promise<void|boolean>, direction: 'next'|'prev'|'nextunique'|'prevunique')
Iterate on the keys (no values)
indexeddb.getStore(t: IDBTransaction, store: String)IDBObjectStore
Open store from transaction
indexeddb.createIDBKeyRangeBound(lower: any, upper: any, lowerOpen: boolean, upperOpen: boolean)
indexeddb.createIDBKeyRangeUpperBound(upper: any, upperOpen: boolean)
indexeddb.createIDBKeyRangeLowerBound(lower: any, lowerOpen: boolean)
import * as isomorphic from 'lib0/isomorphic'
import * as iterator from 'lib0/iterator'
iterator.mapIterator(iterator: Iterator<T>, f: function(T):R): IterableIterator<R>
iterator.createIterator(next: function():IteratorResult<T>): IterableIterator<T>
iterator.iteratorFilter(iterator: Iterator<T>, filter: function(T):boolean)
iterator.iteratorMap(iterator: Iterator<T>, fmap: function(T):M)
import * as json from 'lib0/json'
json.stringify(object: any): string
Transform JavaScript object to JSON.
json.parse(json: string): any
Parse JSON object.
import * as list from 'lib0/list'
new e#ListNode()
e#next: this|null
e#prev: this|null
new st()
art: N | null
d: N | null
(): module:list.List<N>
()
(queue: module:list.List<N>)
()
(queue: module:list.List<N>, node: N)
Remove a single node from the queue. Only works with Queues that operate on Doubly-linked lists of nodes.
()
ode
ode()
etween(queue: module:list.List<N>, left: N| null, right: N| null, node: N)
etween()
(queue: module:list.List<N>, node: N, newNode: N)
Remove a single node from the queue. Only works with Queues that operate on Doubly-linked lists of nodes.
()
(queue: module:list.List<N>, n: N)
()
nt(queue: module:list.List<N>, n: N)
nt()
t(list: module:list.List<N>): N| null
t()
(list: module:list.List<N>): N| null
()
(list: module:list.List<N>, f: function(N):M): Array<M>
()
(list: module:list.List<N>)
()
(list: module:list.List<N>, f: function(N):M)
()
import * as logging from 'lib0/logging'
logging.BOLD
logging.UNBOLD
logging.BLUE
logging.GREY
logging.GREEN
logging.RED
logging.PURPLE
logging.ORANGE
logging.UNCOLOR
logging.print(args: Array<string|Symbol|Object|number>)
logging.warn(args: Array<string|Symbol|Object|number>)
logging.printError(err: Error)
logging.printImg(url: string, height: number)
logging.printImgBase64(base64: string, height: number)
logging.group(args: Array<string|Symbol|Object|number>)
logging.groupCollapsed(args: Array<string|Symbol|Object|number>)
logging.groupEnd
logging.printDom(createNode: function():Node)
logging.printCanvas(canvas: HTMLCanvasElement, height: number)
logging.vconsoles
new logging.VConsole(dom: Element)
logging.VConsole#ccontainer: Element
logging.VConsole#group(args: Array<string|Symbol|Object|number>, collapsed: boolean)
logging.VConsole#groupCollapsed(args: Array<string|Symbol|Object|number>)
logging.VConsole#groupEnd()
logging.VConsole#print(args: Array<string|Symbol|Object|number>)
logging.VConsole#printError(err: Error)
logging.VConsole#printImg(url: string, height: number)
logging.VConsole#printDom(node: Node)
logging.VConsole#destroy()
logging.createVConsole(dom: Element)
logging.createModuleLogger(moduleName: string): function(...any):void
import * as map from 'lib0/map'
map.create(): Map<any, any>
Creates a new Map instance.
map.copy(m: Map<X,Y>): Map<X,Y>
Copy a Map object into a fresh Map object.
map.setIfUndefined(map: Map<K, T>, key: K, createT: function():T): T
Get map property. Create T if property is undefined and set T on map.
const listeners = map.setIfUndefined(events, 'eventName', set.create)
listeners.add(listener)
map.map(m: Map<K,V>, f: function(V,K):R): Array<R>
Creates an Array and populates it with the content of all key-value pairs using the f(value, key)
function.
map.any(m: Map<K,V>, f: function(V,K):boolean): boolean
Tests whether any key-value pairs pass the test implemented by f(value, key)
.
map.all(m: Map<K,V>, f: function(V,K):boolean): boolean
Tests whether all key-value pairs pass the test implemented by f(value, key)
.
import * as math from 'lib0/math'
math.floor
math.ceil
math.abs
math.imul
math.round
math.log10
math.log2
math.log
math.sqrt
math.add(a: number, b: number): number
math.min(a: number, b: number): number
math.max(a: number, b: number): number
math.isNaN
math.pow
math.exp10(exp: number): number
Base 10 exponential function. Returns the value of 10 raised to the power of pow.
math.sign
math.isNegativeZero(n: number): boolean
import * as metric from 'lib0/metric'
metric.yotta
metric.zetta
metric.exa
metric.peta
metric.tera
metric.giga
metric.mega
metric.kilo
metric.hecto
metric.deca
metric.deci
metric.centi
metric.milli
metric.micro
metric.nano
metric.pico
metric.femto
metric.atto
metric.zepto
metric.yocto
metric.prefix(n: number, baseMultiplier: number): {n:number,prefix:string}
Calculate the metric prefix for a number. Assumes E.g. prefix(1000) = { n: 1, prefix: 'k' }
import * as mutex from 'lib0/mutex'
mutex.createMutex(): mutex
Creates a mutual exclude function with the following property:
const mutex = createMutex()
mutex(() => {
// This function is immediately executed
mutex(() => {
// This function is not executed, as the mutex is already active.
})
})
import * as number from 'lib0/number'
number.MAX_SAFE_INTEGER
number.MIN_SAFE_INTEGER
number.LOWEST_INT32
number.HIGHEST_INT32: number
number.isInteger
number.isNaN
number.parseInt
import * as object from 'lib0/object'
object.create(): Object<string,any>
object.assign
Object.assign
object.keys(obj: Object<string,any>)
object.forEach(obj: Object<string,any>, f: function(any,string):any)
object.map(obj: Object<string,any>, f: function(any,string):R): Array<R>
object.length(obj: Object<string,any>): number
object.some(obj: Object<string,any>, f: function(any,string):boolean): boolean
object.isEmpty(obj: Object|undefined)
object.every(obj: Object<string,any>, f: function(any,string):boolean): boolean
object.hasProperty(obj: any, key: string|symbol): boolean
Calls Object.prototype.hasOwnProperty
.
object.equalFlat(a: Object<string,any>, b: Object<string,any>): boolean
import * as observable from 'lib0/observable'
new observable.Observable()
Handles named events.
observable.Observable#on(name: N, f: function)
observable.Observable#once(name: N, f: function)
observable.Observable#off(name: N, f: function)
observable.Observable#emit(name: N, args: Array<any>)
Emit a named event. All registered event listeners that listen to the specified name will receive the event.
observable.Observable#destroy()
websocket.WebsocketClient#on(name: N, f: function)
websocket.WebsocketClient#once(name: N, f: function)
websocket.WebsocketClient#off(name: N, f: function)
websocket.WebsocketClient#emit(name: N, args: Array<any>)
Emit a named event. All registered event listeners that listen to the specified name will receive the event.
import * as pair from 'lib0/pair'
new pair.Pair(left: L, right: R)
pair.create(left: L, right: R): module:pair.Pair<L,R>
pair.createReversed(right: R, left: L): module:pair.Pair<L,R>
pair.forEach(arr: Array<module:pair.Pair<L,R>>, f: function(L, R):any)
pair.map(arr: Array<module:pair.Pair<L,R>>, f: function(L, R):X): Array<X>
import * as prng from 'lib0/prng'
Given a seed a PRNG generates a sequence of numbers that cannot be reasonably predicted. Two PRNGs must generate the same random sequence of numbers if given the same seed.
prng.DefaultPRNG
prng.create(seed: number): module:prng~PRNG
Create a Xoroshiro128plus Pseudo-Random-Number-Generator. This is the fastest full-period generator passing BigCrush without systematic failures. But there are more PRNGs available in ./PRNG/.
prng.bool(gen: module:prng~PRNG): Boolean
Generates a single random bool.
prng.int53(gen: module:prng~PRNG, min: Number, max: Number): Number
Generates a random integer with 53 bit resolution.
prng.uint53(gen: module:prng~PRNG, min: Number, max: Number): Number
Generates a random integer with 53 bit resolution.
prng.int32(gen: module:prng~PRNG, min: Number, max: Number): Number
Generates a random integer with 32 bit resolution.
prng.uint32(gen: module:prng~PRNG, min: Number, max: Number): Number
Generates a random integer with 53 bit resolution.
prng.int31(gen: module:prng~PRNG, min: Number, max: Number): Number
prng.real53(gen: module:prng~PRNG): Number
Generates a random real on [0, 1) with 53 bit resolution.
prng.char(gen: module:prng~PRNG): string
Generates a random character from char code 32 - 126. I.e. Characters, Numbers, special characters, and Space:
prng.letter(gen: module:prng~PRNG): string
prng.word(gen: module:prng~PRNG, minLen: number, maxLen: number): string
prng.utf16Rune(gen: module:prng~PRNG): string
TODO: this function produces invalid runes. Does not cover all of utf16!!
prng.utf16String(gen: module:prng~PRNG, maxlen: number)
prng.oneOf(gen: module:prng~PRNG, array: Array<T>): T
Returns one element of a given array.
prng.uint8Array(gen: module:prng~PRNG, len: number): Uint8Array
prng.uint16Array(gen: module:prng~PRNG, len: number): Uint16Array
prng.uint32Array(gen: module:prng~PRNG, len: number): Uint32Array
import * as promise from 'lib0/promise'
promise.create(f: function(PromiseResolve<T>,function(Error):void):any): Promise<T>
promise.createEmpty(f: function(function():void,function(Error):void):void): Promise<void>
promise.all(arrp: Array<Promise<T>>): Promise<Array<T>>
Promise.all
wait for all promises in the array to resolve and return the result
promise.reject(reason: Error): Promise<never>
promise.resolve(res: T|void): Promise<T|void>
promise.resolveWith(res: T): Promise<T>
promise.until(timeout: number, check: function():boolean, intervalResolution: number): Promise<void>
promise.wait(timeout: number): Promise<undefined>
promise.isPromise(p: any): boolean
Checks if an object is a promise using ducktyping.
Promises are often polyfilled, so it makes sense to add some additional guarantees if the user of this library has some insane environment where global Promise objects are overwritten.
import * as queue from 'lib0/queue'
new de#QueueNode()
de#next: module:queue.QueueNode|null
new ueue()
tart: module:queue.QueueNode | null
nd: module:queue.QueueNode | null
(): module:queue.Queue
()
(queue: module:queue.Queue)
()
(queue: module:queue.Queue, n: module:queue.QueueNode)
()
(queue: module:queue.Queue): module:queue.QueueNode | null
()
import * as random from 'lib0/random'
Attention: falls back to Math.random if the browser does not support crypto.
random.rand
random.uint32
random.uint53
random.oneOf(arr: Array<T>): T
random.uuidv4
import * as set from 'lib0/set'
set.create
set.toArray(set: Set<T>): Array<T>
set.first(set: Set<T>): T
set.from(entries: Iterable<T>): Set<T>
import * as sort from 'lib0/sort'
Note: These sort implementations were created to compare different sorting algorithms in JavaScript. Don't use them if you don't know what you are doing. Native Array.sort is almost always a better choice.
sort.insertionSort(arr: Array<T>, compare: function(T,T):number): void
sort.quicksort(arr: Array<T>, compare: function(T,T):number): void
This algorithm beats Array.prototype.sort in Chrome only with arrays with 10 million entries. In most cases [].sort will do just fine. Make sure to performance test your use-case before you integrate this algorithm.
Note that Chrome's sort is now a stable algorithm (Timsort). Quicksort is not stable.
import * as statistics from 'lib0/statistics'
statistics.median(arr: Array<number>): number
statistics.average(arr: Array<number>): number
import * as storage from 'lib0/storage'
Uses LocalStorage in the browser and falls back to in-memory storage.
storage.varStorage
This is basically localStorage in browser, or a polyfill in nodejs
storage.onChange(eventHandler: function({ key: string, newValue: string, oldValue: string }): void)
A polyfill for addEventListener('storage', event => {..})
that does nothing if the polyfill is being used.
import * as string from 'lib0/string'
string.fromCharCode
string.fromCodePoint
string.trimLeft(s: string): string
string.fromCamelCase(s: string, separator: string): string
string.utf8ByteLength(str: string): number
Compute the utf8ByteLength
string.utf8TextEncoder
string.encodeUtf8
string.decodeUtf8
string.splice(str: string, index: number, remove: number, insert: string)
import * as symbol from 'lib0/symbol'
symbol.create(): Symbol
Return fresh symbol.
symbol.isSymbol(s: any): boolean
import * as testing from 'lib0/testing'
// test.js template for creating a test executable
import { runTests } from 'lib0/testing'
import * as log from 'lib0/logging'
import * as mod1 from './mod1.test.js'
import * as mod2 from './mod2.test.js'
import { isBrowser, isNode } from 'lib0/environment.js'
if (isBrowser) {
// optional: if this is ran in the browser, attach a virtual console to the dom
log.createVConsole(document.body)
}
runTests({
mod1,
mod2,
}).then(success => {
if (isNode) {
process.exit(success ? 0 : 1)
}
})
// mod1.test.js
/**
* runTests automatically tests all exported functions that start with "test".
* The name of the function should be in camelCase and is used for the logging output.
*
* @param {t.TestCase} tc
*\/
export const testMyFirstTest = tc => {
t.compare({ a: 4 }, { a: 4 }, 'objects are equal')
}
Now you can simply run node test.js
to run your test or run test.js in the browser.
testing.extensive
testing.envSeed
new testing.TestCase(moduleName: string, testName: string)
testing.TestCase#moduleName: string
testing.TestCase#testName: string
testing.TestCase#resetSeed()
testing.TestCase#prng: prng.PRNG
A PRNG for this test case. Use only this PRNG for randomness to make the test case reproducible.
testing.repetitionTime
testing.run(moduleName: string, name: string, f: function(module:testing.TestCase):void|Promise<any>, i: number, numberOfTests: number)
testing.describe(description: string, info: string)
Describe what you are currently testing. The message will be logged.
export const testMyFirstTest = tc => {
t.describe('crunching numbers', 'already crunched 4 numbers!') // the optional second argument can describe the state.
}
testing.info(info: string)
Describe the state of the current computation.
export const testMyFirstTest = tc => {
t.info(already crunched 4 numbers!') // the optional second argument can describe the state.
}
testing.printDom
testing.printCanvas
testing.group(description: string, f: function(void):void)
Group outputs in a collapsible category.
export const testMyFirstTest = tc => {
t.group('subtest 1', () => {
t.describe('this message is part of a collapsible section')
})
await t.groupAsync('subtest async 2', async () => {
await someaction()
t.describe('this message is part of a collapsible section')
})
}
testing.groupAsync(description: string, f: function(void):Promise<any>)
Group outputs in a collapsible category.
export const testMyFirstTest = async tc => {
t.group('subtest 1', () => {
t.describe('this message is part of a collapsible section')
})
await t.groupAsync('subtest async 2', async () => {
await someaction()
t.describe('this message is part of a collapsible section')
})
}
testing.measureTime(message: string, f: function():void): number
Measure the time that it takes to calculate something.
export const testMyFirstTest = async tc => {
t.measureTime('measurement', () => {
heavyCalculation()
})
await t.groupAsync('async measurement', async () => {
await heavyAsyncCalculation()
})
}
testing.measureTimeAsync(message: string, f: function():Promise<any>): Promise<number>
Measure the time that it takes to calculate something.
export const testMyFirstTest = async tc => {
t.measureTimeAsync('measurement', async () => {
await heavyCalculation()
})
await t.groupAsync('async measurement', async () => {
await heavyAsyncCalculation()
})
}
testing.compareArrays(as: Array<T>, bs: Array<T>, m: string): boolean
testing.compareStrings(a: string, b: string, m: string)
testing.compareObjects(a: Object<K,V>, b: Object<K,V>, m: string)
testing.compare(a: T, b: T, message: string?, customCompare: function(any,T,T,string,any):boolean)
testing.assert(condition: boolean, message: string?)
testing.promiseRejected(f: function():Promise<any>)
testing.fails(f: function():void)
testing.runTests(tests: Object<string, Object<string, function(module:testing.TestCase):void|Promise<any>>>)
testing.fail(reason: string)
testing.skip(cond: boolean)
import * as time from 'lib0/time'
time.getDate(): Date
Return current time.
time.getUnixTime(): number
Return current unix time.
time.humanizeDuration(d: number): string
Transform time (in ms) to a human readable format. E.g. 1100 => 1.1s. 60s => 1min. .001 => 10μs.
import * as tree from 'lib0/tree'
new tree.Tree()
This is a Red Black Tree implementation
tree.Tree#findNext(id: K)
tree.Tree#findPrev(id: K)
tree.Tree#findNodeWithLowerBound(from: K)
tree.Tree#findNodeWithUpperBound(to: K)
tree.Tree#findSmallestNode(): V
tree.Tree#findWithLowerBound(from: K): V
tree.Tree#findWithUpperBound(to: K): V
tree.Tree#iterate(from: K, from: K, f: K)
tree.Tree#find(id: K): V|null
tree.Tree#findNode(id: K): module:tree~N<V>|null
tree.Tree#delete(id: K)
tree.Tree#put()
import * as url from 'lib0/url'
url.decodeQueryParams(url: string): Object<string,string>
Parse query parameters from an url.
url.encodeQueryParams(params: Object<string,string>): string
import * as webcrypto.browser from 'lib0/webcrypto.browser'
()
omValues
omValues()
import * as webcrypto.node from 'lib0/webcrypto.node'
()
to.subtle: any
omValues
omValues()
import * as websocket from 'lib0/websocket'
Implements exponential backoff reconnects, ping/pong, and a nice event system using [lib0/observable].
new websocket.WebsocketClient(url: string, opts: object, opts.binaryType: 'arraybuffer' | 'blob' | null)
websocket.WebsocketClient#ws: WebSocket?
websocket.WebsocketClient#shouldConnect: boolean
Whether to connect to other peers or not
websocket.WebsocketClient#send(message: any)
websocket.WebsocketClient#destroy()
websocket.WebsocketClient#disconnect()
websocket.WebsocketClient#connect()
React-native apps should be able to use lib0. You need to install a polyfill for webcrypto and enable package-exports support in react-native:
# install polyfill
npm i isomorphic-webcrypto@^2.3.8 # last known working version was 2.3.8
Add this to metro.config.js
(see docs):
const config = {
// ...
resolver: {
unstable_enablePackageExports: true
}
}
The MIT License © Kevin Jahns
FAQs
> Monorepo of isomorphic utility functions
We found that lib0 demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
A supply chain attack on Rspack's npm packages injected cryptomining malware, potentially impacting thousands of developers.
Research
Security News
Socket researchers discovered a malware campaign on npm delivering the Skuld infostealer via typosquatted packages, exposing sensitive data.
Security News
Sonar’s acquisition of Tidelift highlights a growing industry shift toward sustainable open source funding, addressing maintainer burnout and critical software dependencies.